

Supported by

Tests of fast wave current drive for core q profile control and MHD avoidance

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J. Menard, J. Hosea, G. Taylor, ASC + HHFW groups

NSTX FY2011-12 Research Forum LSB B318, PPPL March 16, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Overview

• Brief Description:

Assuming successful HHFW coupling and heating of an NBIheated H-mode plasma, co and <u>counter</u> HHFW CD will be applied to attempt to modify the core q profile and assess changes in transport and MHD instability behavior.

• Motivation:

- -The core q profile is important for confinement and MHD stability in particular via transport barrier formation and avoidance of the q=1 surface entering the plasma.
- In addition to modifying plasma evolution via direct electron heating, HHFW CD is projected to be effective near the magnetic axis in driving current and modifying the central q
- Supports: Scenario optimization, R12-2, R12-3, IOS-5.2, IOS-6.2

HHFW driven current density is sufficiently high to modify q in high NI-fraction H-mode scenarios

Figure 17. Reconstruction of the current profiles for long-pulse discharge 135440. The profiles are for times (a) before and (b) after the change to the more quiescent configuration.

- High non-inductive fraction H-mode $J_{\phi} \sim 0.5-0.7$ MA/m²
 - − NB H-mode shown has 3x higher n_e , 4x lower $T_e \rightarrow \eta_{RFCD}$ = 12x lower
 - 4MW RF \rightarrow 0.1-0.12MA/m² \rightarrow +/- 15-20% change in J_b(0)
 - Ignores any core heating from HHFW and/or fast-ion interactions

Early co-CD could reduce early shear reversal and MHD?

 RFCD of 0.1-0.2MA/m² may be enough to modify shear to vary *AE and TM behavior

Experimental Approach/Plan:

(1.5 day request, 1 day minimum useful)

- Re/produce NBI-heated H-mode plasma with substantial core T_e increase from 2-4MW of HHFW in heating phasing
 - -Use plasma with 2-3MW NBI to reduce NBI-antenna interactions
 - -Use plasma with late n=1 MHD onset (~0.8-1s) as test case
- Switch HHFW phasing to drive current in co-Ip direction
- Perform HHFW power scan to find maximum allowable FW power input for range of phasings: 90°, 60°, 120°
 - Assess plasma response: $\Delta T_e(0)$, variations in q evolution, late MHD
- Repeat above for counter CD phasing
- Move HHFW heating progressively earlier into ramp-up and assess plasma response
- For heating/CD scenarios with largest plasma modification:
 - Increase plasma current and/or decrease $B_{\rm T}$ to assess possible q* range accessible without late n=1 MHD onset

Taylor APS09: Core Heating Efficiency Degrades with Decreasing k_b in L-Mode & H-Mode Plasmas

• Also measure a degradation in core heating efficiency with decreasing k_{ϕ} In D_2 H-mode:

 \succ ~ 66% efficiency at k_b = -13 m⁻¹, decreasing to ~40% at k_b = -8 m⁻¹

Taylor APS09: Interaction Between NBI lons &HHFW Can Be Significant

Major Radius (m)

 Measured acceleration of NBI fast-ions and large increase in neutron rate during HHFW + NBI plasmas

As predicted originally by CQL3D/GENRAY

 Measured significant enhancement & broadening of fast-ion profile when HHFW power is applied

7